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Abstract—In this paper, detection and tracking of moving object 
with shadow removal, automated counting and alarm generation was 
proposed. Improved Gaussian mixture model was used for 
background subtraction and modeling as it robustly deals with 
lighting changes, repetitive motions, clutter and slowly moving 
objects. Shadow detection and removal was performed using 
improved HSV color space method. Morphological operations were 
used for noise removal in post processing step. Kalman filter was 
used for tracking of moving objects with occlusion handling. In the 
last step, automated counting of moving objects and generation of 
alarm when motion was detected were performed. Experimental 
results show that proposed approach was able to detect and track 
moving objects with effective shadow removal and counting. 

1. INTRODUCTION 

Video Surveillance System is getting more and more 
importance nowadays. In many public areas, so many cameras 
are set at different-different angle, for observing unattended 
objects, to keep citizen safe. Surveillance systems are getting 
integrated with intelligent system which can automatically 
detect and track moving objects. Frequently used techniques to 
detect moving objects are background subtraction, statistical 
methods, temporal differencing and optical flow. Background 
subtraction subtracts the current image from a reference 
background image, which is updated during a period of time. 
Statistical method is more advanced method that make use of 
the statistical characteristics of individual pixels have been 
developed to overcome the shortcomings of basic background 
subtraction methods. An adaptive Gaussian mixture model 
described by Stauffer and Grimson [7] is a statistical method. 
However, the background subtraction techniques used to 
extract moving object also detect the shadow cast by it. 
Shadow cast by moving object make it difficult to detect the 
exact shape of object and to recognize the object. Shadow 
detection is a challenging task because shadow differ 
significantly from the background have same motion as the 
object casting it and mostly adjacent to casting object.  

The aim of an object tracking is to generate the trajectory of 
an object over time by locating its position in every frame of 
the video. The efficient tracking of visual features in complex 
environments is a challenging task for the computer vision 

applications. Object tracking methods can be divided into 
three major categories: contour based models [1], region based 
models [2, 3], and feature point-based models [4, 5]. Multiple 
objects tracking through occlusion is still one of the most 
challenging issues in the computer vision. There are a lot of 
difficulties for a single object tracking like illumination 
variability, background noise and occlusions. Multiple object 
tracking is even more challenging due to multi object 
occlusions. 

Mostly used tracking methods are meanshift algorithm, 
camshift algorithm, Kalman filtering and particle filtering. In 
[8] meanshift and kalman-based algorithm is used to solve 
occlusion occur. In [9] acceleration model which is effective 
solution to fast tracking is used to predict the emergence of 
target. Meanshift algorithm is an efficient pattern matching 
algorithm with no parameter estimation, and can be combined 
with other algorithms. It uses the kernel function histogram 
model of the target object. Cucchiara [10] proposed 
probabilistic masks and appearance models to cope with 
frequent shape changes and large occlusions. Eng [11] 
developed a Bayesian segmentation approach that fused a 
region-based background subtraction and a human shape 
model for people tracking under occlusion. 

This paper proposed an approach for detection and tracking of 
moving objects for surveillance and security system. We used 
improved Gaussian Mixture Model as an effective way to 
extract moving objects from a video sequence. However, 
mixture of Gaussian method also extract cast shadows of 
moving objects. So we used improved HSV color space 
method for shadow removal with improved Gaussian mixture 
Model in order to achieve accurate extraction of the shapes of 
moving objects. To track moving objects in subsequent 
images, we use Kalman filter. The tracking stage used kalman 
filter to model the speed and acceleration of a tracked objects 
and to predict the position in the current frame and simulate 
the object trajectories. Finally automated counting and 
generation of alarm when the motion was detected were 
performed. 

The remainder of this paper is organized as follows: Flow 
chart of proposed method is presented in Section 2, in Section 
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.The improved HSV color space method detects shadow more 
accurately and robustly. In [13], the authors think the V 
component of shadow is smaller than background’s, and S,H 
components do not change much, In HSV color space to 
identify shadow mask for each point ( ,x y ) (previously 

detected as moving object point). Cucchiara [13] define three 
constraint on the H, S, V values of pixel ( ,x y ) as follows  
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 (9) 

Where V
kI (x, y) is the intensity value for component V of 

the HSV color space at coordinate (x, y) in the frame K. 

V
kB ( ,x y ) the background V component at coordinate ( ,x y ) 

and 
thK  frame time. 

( , )S
kI x y

foreground S component, 

( , )S
kB x y

 background S component. 
( , )H

kI x y
foreground H 

component. 
( , )H

kB x y
 background H component.  ,  , S

, S  are manually defined parameters. Improved HSV color 

space method uses 

2
( , )

( , )

V

k

V

k

I x y

B x y

 
 
  instead of 

( , )

( , )

V

k

V

k

I x y

B x y
 in the 

condition described in equation (9).this improved the 
robustness and accuracy of shadow detection. 

2.3. Post Processing  

The detected moving objects in the previous phase may lead to 
have a connectivity problem and it may also have some holes 
which may be useless for object representation. Therefore here 
we need to have some post processing which will reduce the 
problem of handling holes and the connectivity of pixels 
within object region. Mathematical morphological analysis is 
one of post processing approach which leads to enhance the 
segmented image in order to improve the required result. In 
the proposed method we have used the erosion and dilation 
iteratively so that an object will clearly appear in foreground 
while the rest useless blobs will be removed. Morphological 
operations are useful to obtain the useful components from the 
image.  

2.4. Tracking Using Kalman Filter  

In the proposed approach multiple objects tracking was 
performed using Kalman filtering which uses Stable Marriage 
Problem (SMP) implemented algorithm which is adapted to 
perform data association.  

In reference [14], Kalman filter is an optimal solution for the 
discrete data linear filtering problem. Kalman filter is a set of 
mathematical equations which provide an efficient 
computational solution to sequential systems. The filter is very 
powerful in several aspects: it supports estimation of past, 
present, and future states (prediction), and it can do so even 
when the precise nature of the modeled system is unknown. 
The filter is derived by finding the estimator for a linear 
system, subject to additive white Gaussian noise. Given a 
discrete-time process described by the following equations. 

Dynamic model: 

1k k kx Ax w  
  (10) 

Measurement model: 

k k k kz H x v 
  (11) 

Where kx is n×1 system state vector, kw  is n×1 process noise 

vector, kz  is m×1 measurement vector, and kv  is m×1 

measurement noise vector. Both kw  and kv are assumed to be 

uncorrelated zero-mean Gaussian white noise. The KF 
algorithm represents a feasible linear measurement update for 
the estimate and error covariance. KF can be organized into 
time update and measurement priori estimates for the next 
time step. 

The measurement update equations incorporate a new 
observation into a priori estimate from the time update 
equations to obtain an improved posteriori estimate. 

As mentioned in [4], In order to find match between two sets 
of targets (previous frame) and objects (current frame 
measurements) used SMP algorithm adapted to the perform 
data association introduced in [14]. After extracting current 
frame objects positions (first set) and previous targets 
positions estimated by Kalman filter for current frame, we 
create cost matrix of two sets based on Euclidian distance of 
two set positions and apply SMP algorithm to this cost matrix 
to find the most stable match between targets and 
measurements. KF handle occlusion very effectively. 

2.5. Automated Counting and Alarm Generation 

Automated counting of moving objects is one of the important 
feature of proposed system. An efficient mechanism are used 
to performed automated counting of moving objects and it is 
very useful in traffic monitoring system. 

In proposed system, a mechanism is provided to raise an alarm 
in case of motion is detected in the video stream. This 
property makes proposed system act as an effective 
surveillance system. 
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Fig. 2: Experimental results of campus video sequence for outdoor scene 
a) Original image. b) Background subtraction using Gaussian Mixture 

Model Result. c) Object Segmentation error because of shadow. d) Result 
after shadow removal process. e) Final result with  

segmented object  

3. EXPERIMENTAL RESULTS 

The system is tested in typical indoor and outdoor 
environments for handling various situations, background 
modeling, shadow detection, occlusion and counting. In order 
to evaluate the tracking performance of our system, we used 
three video sequences (campus, atrium and intelligent room). 
Campus and atrium video sequences are outdoor sequence 
with multiple moving objects while intelligent room video 
sequence is indoor sequence with single moving object. All 
three sequences have shadows of moving objects with 
different backgrounds. Campus video Sequence is used to 
demonstrate the capability of system in tracking in presence of 
shadow for outdoor environment as shown in figure 2. Figure 
2 show that objects were merge in a single blob due to 
shadows but after shadow removal process they were 
segmented into different blobs. In atrium video sequence as 
shown in figure 3 prediction of person occluded by tree are 
performed successfully. Figure 4 shows tracking results with 
occlusion handling while in figure 5 automated counting of 
moving persons were performed. 

 
(a)      (b) 

Fig. 3: Tracking results for atrium video sequence in outdoor 
environment (a) Result before occlusion  

(b) Result after occlusion by tree  
 

Tracking of single moving person with shadow removal was 
performed in intelligent room video sequence as shown in 
figure 6. These results show that our proposed method 
successfully performed tracking with occlusion handling, 
shadow detection and counting. 

 

Fig. 4: Tracking with occlusion detection results for atrium video 
sequence (a) Result before occlusion (b) Result at the time of  

partial occlusion (c) Result after occlusion detection 

 

Fig. 5: Automated counting results of atrium video sequence.  
The system correctly count number of persons in the scene. 

4. CONCLUSIONS 

We have proposed an approach for detection and tracking of 
multiple moving objects with shadow detection, alarm 
generation and automated counting. Detection of moving 
objects were performed using improved Gaussian Mixture 
Model, which can effectively detects different situations like 
sudden illumination change, fake motions. Proposed approach 
uses improved HSV color space method for shadow detection 
and morphological operations for noise removal from the 
background subtracted images. The tracking process is done 
using a Kalman filter with occlusion handling. Experimental 
results shows that the system can deal with difficult situations 
such as shadow and illumination changes. It shows the 
effectiveness and robustness of the proposed approach. 
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Fig. 6: Tracking results for intelligent room sequence in  
indoor environment with single person 
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